博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
【深度学习系列】PaddlePaddle垃圾邮件处理实战(二)
阅读量:6476 次
发布时间:2019-06-23

本文共 9227 字,大约阅读时间需要 30 分钟。

PaddlePaddle垃圾邮件处理实战(二)

前文回顾

  在上篇文章中我们讲了如何用支持向量机对垃圾邮件进行分类,auc为73.3%,本篇讲继续讲如何用PaddlePaddle实现邮件分类,将深度学习方法运用到文本分类中。

构建网络模型

  用PaddlePaddle来构建网络模型其实很简单,首先得明确paddlepaddle的输入数据的格式要求,知道如何构建网络模型,以及如何训练。关于输入数据的预处理等可以参考我之前写的这篇文章。首先我们先采用一个浅层的神经网络来进行训练。

具体步骤

  • 读取数据
  • 划分训练集和验证集
  • 定义网络结构
  • 打印训练日志
  • 可视化训练结果

读取数据

  在PaddlePaddle中,我们需要创建一个reador来读取数据,在上篇文章中,我们已经对原始数据处理好了,正负样本分别为ham.txt和spam.txxt,这里我们只需要加载数据即可。

代码实现:

# 加载数据def loadfile():   # 加载正样本   fopen = open('ham.txt','r')   pos = []   for line in fopen:       pos.append(line)          #加载负样本   fopen = open('spam.txt','r')   neg = []   for line in fopen:       neg.append(line)          combined=np.concatenate((pos, neg))   # 创建label   y = np.concatenate((np.ones(len(pos),dtype=int), np.zeros(len(neg),dtype=int)))   return combined,y# 创建paddlepaddle读取数据的reader def reader_creator(dataset,label):    def reader():        for i in xrange(len(dataset)):                yield dataset[i,:],int(label[i])    return reader

创建词语索引:

#创建词语字典,并返回每个词语的索引,词向量,以及每个句子所对应的词语索引def create_dictionaries(model=None,                        combined=None):    if (combined is not None) and (model is not None):        gensim_dict = Dictionary()        gensim_dict.doc2bow(model.wv.vocab.keys(),                            allow_update=True)        w2indx = {v: k+1 for k, v in gensim_dict.items()}#所有频数超过10的词语的索引        w2vec = {word: model[word] for word in w2indx.keys()}#所有频数超过10的词语的词向量        def parse_dataset(combined):            ''' Words become integers            '''            data=[]            for sentence in combined:                new_txt = []                sentences = sentence.split(' ')                for word in sentences:            try:                word = unicode(word, errors='ignore')                        new_txt.append(w2indx[word])                    except:                        new_txt.append(0)                data.append(new_txt)            return data        combined=parse_dataset(combined)        combined= sequence.pad_sequences(combined, maxlen=maxlen)#每个句子所含词语对应的索引,所以句子中含有频数小于10的词语,索引为0        return w2indx, w2vec,combined    else:        print 'No data provided...'

划分训练集和验证集

  这里我们采取sklearn的train_test_split函数对数据集进行划分,训练集和验证集的比例为4:1。

代码实现:

# 导入word2vec模型def word2vec_train(combined):    model = Word2Vec.load('lstm_data/model/Word2vec_model.pkl')    index_dict, word_vectors,combined = create_dictionaries(model=model,combined=combined)    return   index_dict, word_vectors,combined# 获取训练集、验证集def get_data(index_dict,word_vectors,combined,y):    n_symbols = len(index_dict) + 1  # 所有单词的索引数,频数小于10的词语索引为0,所以加1    embedding_weights = np.zeros((n_symbols, vocab_dim))#索引为0的词语,词向量全为0    for word, index in index_dict.items():#从索引为1的词语开始,对每个词语对应其词向量        embedding_weights[index, :] = word_vectors[word]    x_train, x_val, y_train, y_val = train_test_split(combined, y, test_size=0.2)    print x_train.shape,y_train.shape    return n_symbols,embedding_weights,x_train,y_train,x_val,y_val

定义网络结构

class NeuralNetwork(object):    def __init__(self,X_train,Y_train,X_val,Y_val,vocab_dim,n_symbols,num_classes=2):        paddle.init(use_gpu = with_gpu,trainer_count=1)        self.X_train = X_train        self.Y_train = Y_train        self.X_val = X_val        self.Y_val = Y_val        self.vocab_dim = vocab_dim        self.n_symbols = n_symbols        self.num_classes=num_classes    # 定义网络模型    def get_network(self):        # 分类模型        x = paddle.layer.data(name='x', type=paddle.data_type.dense_vector(self.vocab_dim))        y = paddle.layer.data(name='y', type=paddle.data_type.integer_value(self.num_classes))        fc1 = paddle.layer.fc(input = x,size = 1280,act = paddle.activation.Linear())        fc2 = paddle.layer.fc(input = fc1,size = 640,act = paddle.activation.Relu())        prob = paddle.layer.fc(input = fc2,size = self.num_classes,act = paddle.activation.Softmax())        predict = paddle.layer.mse_cost(input = prob,label = y)    return predict    # 定义训练器    def get_trainer(self):        cost = self.get_network()        #获取参数        parameters = paddle.parameters.create(cost)        #定义优化方法        optimizer0 = paddle.optimizer.Momentum(                                momentum=0.9,                                regularization=paddle.optimizer.L2Regularization(rate=0.0002 * 128),                                learning_rate=0.01 / 128.0,                                learning_rate_decay_a=0.01,                                learning_rate_decay_b=50000 * 100)        optimizer1 = paddle.optimizer.Momentum(                                momentum=0.9,                                regularization=paddle.optimizer.L2Regularization(rate=0.0002 * 128),                                learning_rate=0.001,                                learning_rate_schedule = "pass_manual",                                learning_rate_args = "1:1.0, 8:0.1, 13:0.01")    optimizer = paddle.optimizer.Adam(                    learning_rate=2e-3,                    regularization=paddle.optimizer.L2Regularization(rate=8e-4),                    model_average=paddle.optimizer.ModelAverage(average_window=0.5))        # 创建训练器        trainer = paddle.trainer.SGD(                cost=cost, parameters=parameters, update_equation=optimizer)        return parameters,trainer    # 开始训练    def start_trainer(self,X_train,Y_train,X_val,Y_val):        parameters,trainer = self.get_trainer()        result_lists = []        def event_handler(event):            if isinstance(event, paddle.event.EndIteration):                if event.batch_id % 100 == 0:                    print "\nPass %d, Batch %d, Cost %f, %s" % (                        event.pass_id, event.batch_id, event.cost, event.metrics)            if isinstance(event, paddle.event.EndPass):                    # 保存训练好的参数                with open('params_pass_%d.tar' % event.pass_id, 'w') as f:                    parameters.to_tar(f)                # feeding = ['x','y']                result = trainer.test(                        reader=val_reader)                            # feeding=feeding)                print "\nTest with Pass %d, %s" % (event.pass_id, result.metrics)                result_lists.append((event.pass_id, result.cost,                        result.metrics['classification_error_evaluator']))        # 开始训练        train_reader = paddle.batch(paddle.reader.shuffle(                reader_creator(X_train,Y_train),buf_size=20),                batch_size=4)        val_reader = paddle.batch(paddle.reader.shuffle(                reader_creator(X_val,Y_val),buf_size=20),                batch_size=4)        trainer.train(reader=train_reader,num_passes=5,event_handler=event_handler)    #找到训练误差最小的一次结果    best = sorted(result_lists, key=lambda list: float(list[1]))[0]        print 'Best pass is %s, testing Avgcost is %s' % (best[0], best[1])        print 'The classification accuracy is %.2f%%' % (100 - float(best[2]) * 100)

训练模型

#训练模型,并保存def train():    print 'Loading Data...'    combined,y=loadfile()    print len(combined),len(y)    print 'Tokenising...'    combined = tokenizer(combined)    print 'Training a Word2vec model...'    index_dict, word_vectors,combined=word2vec_train(combined)    print 'Setting up Arrays for Keras Embedding Layer...'    n_symbols,embedding_weights,x_train,y_train,x_val,y_val=get_data(index_dict, word_vectors,combined,y)    print x_train.shape,y_train.shape    network = NeuralNetwork(X_train = x_train,Y_train = y_train,X_val = x_val, Y_val = y_val,vocab_dim = vocab_dim,n_symbols = n_symbols,num_classes = 2)    network.start_trainer(x_train,y_train,x_val,y_val)if __name__=='__main__':    train()

性能测试

  设置迭代5次,输出结果如下:

Using TensorFlow backend.Loading Data...63000 63000Tokenising...Building prefix dict from the default dictionary ...[DEBUG 2018-01-29 00:29:19,184 __init__.py:111] Building prefix dict from the default dictionary ...Loading model from cache /tmp/jieba.cache[DEBUG 2018-01-29 00:29:19,185 __init__.py:131] Loading model from cache /tmp/jieba.cacheLoading model cost 0.253 seconds.[DEBUG 2018-01-29 00:29:19,437 __init__.py:163] Loading model cost 0.253 seconds.Prefix dict has been built succesfully.[DEBUG 2018-01-29 00:29:19,437 __init__.py:164] Prefix dict has been built succesfully.I0128 12:29:17.325337 16772 GradientMachine.cpp:101] Init parameters done.Pass 0, Batch 0, Cost 0.519137, {'classification_error_evaluator': 0.25}Pass 0, Batch 100, Cost 0.410812, {'classification_error_evaluator': 0}Pass 0, Batch 200, Cost 0.486661, {'classification_error_evaluator': 0.25}···Pass 4, Batch 12200, Cost 0.508126, {'classification_error_evaluator': 0.25}Pass 4, Batch 12300, Cost 0.312028, {'classification_error_evaluator': 0.25}Pass 4, Batch 12400, Cost 0.259026, {'classification_error_evaluator': 0.0}Pass 4, Batch 12500, Cost 0.177996, {'classification_error_evaluator': 0.25}Test with Pass 4, {'classification_error_evaluator': 0.15238096714019775}Best pass is 4, testing Avgcost is 0.716855627394The classification accuracy is 84.76%

  由此可以看到,仅迭代5次paddlepaddle的结果即可达到84.76%,如果增加迭代次数,可以达到更高的准确率。

总结

  本篇文章讲了如何用paddlepaddle来进行垃圾邮件分类,采取一个简单的浅层神经网络来训练模型,迭代5次的准确率即为84.76%。在实际操作过程中,大家可以增加迭代次数,提高模型的精度,也可采取一些其他的方法,譬如文本CNN模型,LSTM模型来训练以获得更好的效果。

本文首发于景略集智,并由景略集智制作成“PaddlePaddle调戏邮件诈骗犯”系列视频。如果有不懂的,欢迎在评论区中提问~

转载地址:http://qelko.baihongyu.com/

你可能感兴趣的文章
ado.net2.0中的缓存使用SqlDependency类
查看>>
Java基础学习总结(94)——Java线程再学习
查看>>
iOS开发之调用系统设置
查看>>
利用 ACPI\\ACPI0003设备 判断笔记本还是台式机
查看>>
解决wampserver 服务无法启动
查看>>
ES6中Promise封装ajax的写法
查看>>
初次使用 VUX
查看>>
javascript 字符串转数字的简便写法
查看>>
html之div始终停留在屏幕中间部分
查看>>
Spring中jdbcTemplate的用户实例
查看>>
[模板] 快速傅里叶变换/FFT/NTT
查看>>
DecimalFormat 数据格式设置 SimpleDateFormat时间格式的用法介绍 --转载
查看>>
Android 的Margin和Padding属性以及支持的长度单位
查看>>
HDU ACM 1050 Moving Tables
查看>>
Django templates加载css/js/image等静态资源
查看>>
Eclipse C + GTK2.0环境构筑
查看>>
caffe solver
查看>>
Rhel6-heartbeat+lvs配置文档
查看>>
[CF340D]Bubble Sort Graph/[JZOJ3485]独立集
查看>>
ORACLE分科目统计每科前三名的学生的语句
查看>>